跳到主要內容區

陳建智老師

陳建智(Chien-Chih Chen)

一、最高學歷

國立成功大學 工業與資訊管理研究所 博士

二、經歷

A主要經歷

時間

經歷

2020/08 ~ 2021/07

成功大學-博士後研究員

2019/11 ~ 2020/07

高雄醫學大學-博士後研究員

2016/08 ~ 2019/07

成功大學/高雄科大-博士後研究員/助理研究員

2013/08 ~ 2014/07

成功大學-博士後研究員

B其他實務經驗

時間

實務經驗

2022/10 ~ 2024/01

華泰電子- AI資深工程師

2012/07 ~ 2012/12

群創電子-外包產品管理師

2007/09 ~ 2008/08

燁輝鋼鐵-生管工程師

2006/01 ~ 2006/09

偉同科技-企劃股長

2004/08 ~ 2005/05

日月光半導體-工業工程師

2003/03 ~ 2003/12

偉同科技-生管工程師

2002/06 ~ 2003/03

彥陽科技/茂綸(股)-業務工程師

2000/10 ~ 2001/12

大成長城-儲備幹部

三、研究領域及專長

  1. 大數據分析
  2. 小樣本學習
  3. 人工智慧(AI)演算法
  4. 機器學習演算法
  5. 啟發式最佳化演算法

四、研究成果

A期刊論文

  1. Chung, H.-W., Chang, C.-K., Huang, T.-H., Chen, L.-C., Chen, H.-L., Yang, S.-T., Chen, C.-C.*, Wang, K. (2023). Mobile Device-Based Video Screening for Infant Head Lag: An Exploratory Study. Children, 10, 1239. https://doi.org/10.3390/children10071239SCI; IF= 2.835
  2. Chen, Y.-Y., Wang, KC, Chung, H.-W., Chen, C.-C., Huang B.-H., Lu, I-W. (2023). Multi-Person Pose Estimation using an Ordinal Depth-Guided Convolutional Neural Network, Journal of Information Science and Engineering. 39, 1403-1420. https://doi.org/10.6688/JISE.202311_39(6).0010SCI; IF= 1.142
  3. Chang, C.-J., Dai, W.-L., Li, D.-C., Chen, C.-C., & Li, G. (2023). An Extrapolation Non-Equigap Grey Model for Operation Management. Journal of Grey System, 35(1), 101-112. SCI; IF= 1.3
  4. Chang, C.-J., Chen, C.-C., Dai, W.-L., & Li, G. (2021). A new grey prediction model considering the data gap compensation. Grey Systems: Theory and Application, 11(4), 650-663. doi:10.1108/GS-07-2020-0087SCI; IF= 3.321
  5. Chen, C.-C., Chang, C.-J., Zhuang, Z.-Y., & Li, D.-C. (2020). An envelopment learning procedure for improving prediction accuracies of grey models. Computers and Industrial Engineering, 139, 106185. doi:https://doi.org/10.1016/j.cie.2019.106185SCI; IF= 3.518
  6. Hsu, H.-C., Chang, S., Chen, C.-C., & Wu, I. C. (2020). Knowledge-based system for resolving design clashes in building information models. Automation in Construction, 110, 103001. doi:https://doi.org/10.1016/j.autcon.2019.103001SCI; IF= 4.313
  7. Chang, C. J., Li, D-C., Chen, C. C., & Chen, W. C. (2019). Extrapolation-based grey model for small-data-set forecasting. Economic Computation and Economic Cybernetics Studies and Research, 53(1), 171-182. https://doi.org/10.24818/18423264/53.1.19.11SCI, SSCI, IF 0.664
  8. Li, D.-C., Lin, L.-S., Chen, C. C.., & Yu, W.-H. (2019). Using virtual samples to improve learning performance for small datasets with multimodal distributions. Soft Computing, 23(22), 11883-11900. doi:10.1007/s00500-018-03744-zSCI; IF= 2.367
  9. Chang, C. J., Dai, W. L., Li, D-C., & Chen, C. C. (2018). Latent-Function-Based Residual Discrete Grey Model for Short-Term Demand Forecasting. Cybernetics and Systems, 49(3), 170-180. https://doi.org/10.1080/01969722.2018.1448228.SCI; IF= 1.197
  10. Li, D-C., Yeh, C. W., Chen, C. C., & Wang, Y. T. (2018). A new grey prediction model for the return material authorization process in the TFT-LCD industry. International Journal of Advanced Manufacturing Technology, 96(5-8), 2149-2160. https://doi.org/10.1007/s00170-018-1754-y.SCI; IF= 2.209
  11. Li, D-C., Lin, W. K., Chen, C. C., Chen, H. Y., & Lin, L. S. (2018). Rebuilding sample distributions for small dataset learning. Decision Support Systems, 105, 66-76. https://doi.org/10.1016/j.dss.2017.10.013.SCI, IF 3.222
  12. Li, D-C., Lin, W. K., Lin, L. S., Chen, C. C., & Huang, W. T. (2016). The attribute-trend-similarity method to improve learning performance for small datasets. International Journal of Production Research, 55(7), 1898-1913. https://doi.org/10.1080/00207543.2016.1213447.SCI, IF 2.325
  13. Li, D-C., Yeh, C. W., Chen, C. C., & Shih, H. T. (2016). Using a diffusion wavelet neural network for short-term time series learning in the wafer level chip scale package process. Journal of Intelligent Manufacturing, 27(6), 1261-1272. https://doi.org/10.1007/s10845-014-0949-9.SCI, IF 3.035
  14. Chang, C. J., Dai, W. L., Chen, C. C. (2015). A novel procedure for multimodel development using the grey silhouette coefficient for small-data-set forecasting. Journal of the Operational Research Society. 66(11), 1887-1894. https://www.tandfonline.com/doi/full/10.1057/jors.2015.17.SCI, IF 1.225
  15. Li, D-C., Chen, W. C., Chang, C. J., Chen, C. C., & Wen, I. H. (2015). Practical information diffusion techniques to accelerate new product pilot runs. International Journal of Production Research, 53(17), 5310-5319. https://doi.org/10.1080/00207543.2015.1032437.SCI, IF 2.325
  16. Chang, C. J., Li, D-C., Huang, Y. H., & Chen, C. C. (2015). A novel gray forecasting model based on the box plot for small manufacturing data sets. Applied Mathematics and Computation, 265, 400-408. https://doi.org/10.1016/j.amc.2015.05.006.SCI, IF 1.738
  17. Li, D-C., Huang, W. T., Chen, C. C., & Chang, C. J. (2014). Employing box plots to build high-dimensional manufacturing models for new products in TFT-LCD plants. Neurocomputing, 142, 73-85. https://doi.org/10.1016/j.neucom.2014.03.043.SCI, IF 3.317
  18. Chang, C. J., Li, D-C., Dai, W. L., & Chen, C. C. (2014). A latent information function to extend domain attributes to improve the accuracy of small-data-set forecasting. Neurocomputing, 129, 343-349. https://doi.org/10.1016/j.neucom.2013.09.024.SCI, IF 3.317
  19. Chang, C. J., Li, D-C., Chen, C. C., & Chen, C. S. (2014). A forecasting model for small non-equigap data sets considering data weights and occurrence possibilities. Computers and Industrial Engineering, 67(1), 139-145. https://doi.org/10.1016/j.cie.2013.11.002.SCI, IF 2.623
  20. Chang, C. J., Li, D-C., Chen, C. C., & Dai, W. L. (2013). A Grey-based rolling procedure for short-term forecasting using limited time series data. Economic Computation and Economic Cybernetics Studies and Research, 47(3), 75-90.SCI, SSCI, IF 0.420
  21. Chang, C. J., Li, D-C., Dai, W. L., & Chen, C. C. (2013). Utilizing an adaptive grey model for short-term time series forecasting: A case study of wafer-level packaging. Mathematical Problems in Engineering, 2013, [526806]. https://doi.org/10.1155/2013/526806. SCI, IF 1.383
  22. Li, D-C., Huang, W. T., Chen, C. C., & Chang, C. J. (2013). Employing virtual samples to build early high-dimensional manufacturing models. International Journal of Production Research, 51(11), 3206-3224. https://doi.org/10.1080/00207543.2012.746795.SCI, IF 2.325
  23. Li, D-C., Chang, C. J., Chen, C. C., & Chen, W. C. (2012). A grey-based fitting coefficient to build a hybrid forecasting model for small data sets. Applied Mathematical Modelling, 36(10), 5101-5108. https://doi.org/10.1016/j.apm.2011.12.050SCI, IF 2.350
  24. Li, D-C., Chen, C. C., Chen, W. C., & Chang, C. J. (2012). Employing dependent virtual samples to obtain more manufacturing information in pilot runs. International Journal of Production Research, 50(23), 6886-6903. https://doi.org/10.1080/00207543.2011.631603.SCI, IF 2.325
  25. Li, D-C., Chen, C. C., Chang, C. J., & Chen, W. C. (2012). Employing box-and-whisker plots for learning more knowledge in TFT-LCD pilot runs. International Journal of Production Research, 50(6), 1539-1553. https://doi.org/10.1080/00207543.2011.555430.SCI, IF 2.325
  26. Li, D-C., Chen, C. C., Chang, C. J., & Lin, W. K. (2012). A tree-based-trend-diffusion prediction procedure for small sample sets in the early stages of manufacturing systems. Expert Systems With Applications, 39(1), 1575-1581. https://doi.org/10.1016/j.eswa.2011.08.071.SCI, IF 3.928
  27. Li, D-C., Chang, C. J., Chen, C. C., & Chen, W. C. (2012). Forecasting short-term electricity consumption using the adaptive grey-based approach-An Asian case. Omega, 40(6), 767-773. https://doi.org/10.1016/j.omega.2011.07.007.SCI, SSCI, IF 4.029
  28. Li, D-C., Chen, W. C., Liu, C. W., Chang, C. J., & Chen, C. C. (2012). Determining manufacturing parameters to suppress system variance using linear and non-linear models. Expert Systems With Applications, 39(4), 4020-4025. https://doi.org/10.1016/j.eswa.2011.09.067SCI, IF 3.928
  29. Li, D-C., Chang, C. J., Chen, W. C., & Chen, C. C. (2011). An extended grey forecasting model for omnidirectional forecasting considering data gap difference. Applied Mathematical Modelling, 35(10), 5051-5058. https://doi.org/10.1016/j.apm.2011.04.006SCI, IF 2.326
  30. Li, D-C., Chang, C. J., Chen, C. C., & Chen, C. S. (2010). Using non-equigap grey model for small data set forecasting - A color filter manufacturing example. Journal of Grey System, 22(4), 375-382.SCI, IF 0.370
  31. Li, D-C., Liu, C. W., Fang, Y. H., & Chen, C. C. (2010). A yield forecast model for pilot products using support vector regression and manufacturing experience-the case of large-size polariser. International Journal of Production Research, 48(18), 5481-5496. https://doi.org/10.1080/00207540903100051.SCI; IF= 1.033

B研討會論文

  1. Lin, Y. S., Li, D. C., Chen, C. C., and Chen, H. Y. (2019). Using MTD-based Non-Equigap Grey Models for Defective Recognition in Hi-tech Industry. Paper presented at the 2019 International Congress on Grey Systems and Uncertainty Analysis (GSUA 2019), Bangkok.
  2. Lin, Y. S., Cheng, W. N., Chen, C. C., Li, D. C., & Chen, H. Y. (2019, 7-11 July 2019). Generating Synthetic Samples to Improve Small Sample Learning with Mixed Numerical and Categorical Attributes. Paper presented at the 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI).

C技術報告及專書

D專利或新品種

類別

專利名稱

國別

專利號碼

發明人

專利權人

專利核准

   

所屬計畫名稱

E技術移轉

技術名稱

金額

授權單位

被授權單位

簽約日期

所屬計畫名稱

五、研究計畫及產學實績

主持人或

共同主持人

計畫名稱

(國科會補助者請註明編號)

計畫期程

計畫

金額

補助或

委託機構

共同主持人

封裝關鍵製程-晶圓研磨設備效能AI異常偵測系統建置

112/03/01~

112/09/30

1,500,000

台灣科技產業園區電機電子工業同業公會

六、獲獎及其他優良事蹟

A獲獎

  1. The 2019 International Congress on Grey Systems and Uncertainty Analysis (GSUA 2019) 最佳論文獎

B其他優良事蹟

瀏覽數: